Ν	a	m	ne	•
			10	٠

Density Lab

Objective:

I can show how altitude affects the density of the air.

Materials:

Beans (air molecules) Triple beam balance/scale	Layers of the Atmosphere Data Sheet
---	-------------------------------------

Problem: How does altitude affect the density of the air?

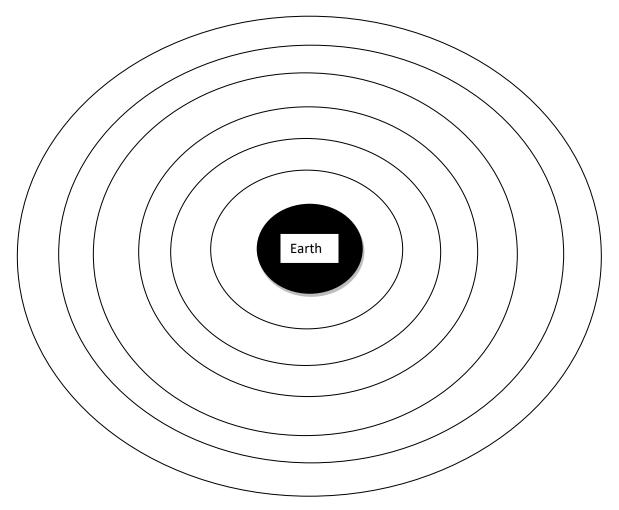
Hypothesis: If I increase the altitude, then the density of the air will ______

Experiment procedure:

- 1. Take the beans and put them end to end to create a circle around the inside of the *troposphere*.
- 2. Draw the beans in the troposphere on your lab diagram (make sure you have the correct number of beans in your diagram)
- 3. Using the same beans from step 1 (DO NOT ADD ANY MORE BEANS) evenly space the beans around the stratosphere and draw the location of those beans on your lab diagram
- 4. Repeat step 3 for the mesosphere, thermosphere, and exosphere
- 5. Take those beans (between 10-15 beans) and find the mass of those beans using a triple beam balance. Record the mass in your data table
- 6. Calculate the density of the air molecules (beans) using the formula:

Density = mass/volume

7. Using the same mass you found in step 4, calculate the density for the stratosphere, mesosphere, thermosphere, and exosphere.


Density Lab

Hypothesis: If I increase the altitude, then the density of the air will _____

Experiment Data:

Layer	Mass (grams)	Volume (cm3)	Density m/v = g/cm3 (round to the nearest thousandth)
Troposphere (T)		20.58 cm3	
Stratosphere (S)		104.21 cm3	
Mesosphere (M)		523.08 cm3	
Thermosphere		724.73 cm3	
Exosphere		1527.04 cm3	

- Label the layers of the atmosphere
- Draw the air molecules (beans) in each layer of the atmosphere

Analyze Data: Create a bar graph (comparing) to show the densities of each layer

Title: _____

	Troposphere	Stratosphere	Mesosphere	Thermosphere	Exosphere
0					
.01					
.02					
.03					
.04					
.05					
.06					
.07					
.08					
.09					
.10					
.11					
.12					
.13					
.14					
.15					
.16					
.17					
.18					
.19					
.20					
.21					
.22					
.23					
.24					
.25					
.26					
.27					
.28					

X-Axis Label _____

Y-Axis Label

Conclusion Questions: ANSWER IN COMPLETE SENTENCES!!!

- 1. What was the density in the troposphere? How does this density compare to the density in the other layers?
- 2. As altitude increases what happens to the density of the air? Use your density calculations to support your answer. (Example: The density of the air in the troposphere was 5.2 g/cm and increased in the mesosphere to 8.6g/cm)
- 3. What did you notice about the space in between the beans on your lab diagram of the layers of the atmosphere as altitude increases?
- 4. Explain the relationship between density of the air and altitude?

5. What layer has the lowest density? Explain why this layer has the lowest density.